Left permutable multiplicative sets and left strongly prime ideals in rings
نویسندگان
چکیده
منابع مشابه
Left Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملZero sets in pointfree topology and strongly $z$-ideals
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملOn Jordan ideals and left (θ, θ)-derivations in prime rings
Let R be a ring and S a nonempty subset of R. Suppose that θ and φ are endomorphisms of R. An additive mapping δ : R → R is called a left (θ,φ)-derivation (resp., Jordan left (θ,φ)derivation) on S if δ(xy) = θ(x)δ(y)+φ(y)δ(x) (resp., δ(x2) = θ(x)δ(x)+φ(x)δ(x)) holds for all x,y ∈ S. Suppose that J is a Jordan ideal and a subring of a 2-torsion-free prime ring R. In the present paper, it is show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lietuvos matematikos rinkinys
سال: 2008
ISSN: 2335-898X,0132-2818
DOI: 10.15388/lmr.2008.03